U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 346

NUMERICAL SOLUTION OF THE PRIMITIVE EQUATIONS
ON THE
CONNECTION MACHINE

James J. Tuccillo
Automation Division

December 29, 1988

This is an unreviewed manuscript, primarily
intended for informal exchange of information
among NMC staff members.

P CATE
CafFer

&

NUMERICAL SOLUTION OF THE PRIMITIVE EQUATIONS
ON THE
CONNECTION MACHINE

James J. Tuccillo
National HMeteorological Center
¥ashington, D.C.

1. INTRODUCTION

Since the late 1960's, the hydrostatic primitive equations
have been the basis for operational Numerical Weather
Prediction (N¥P). These equations describe the time rate of
change of the three dimensional atmospheric state variables:
wind, temperature. moisture and pressure. Numerical time

~ integration., from & set of initial conditions, for a period

of 2 to 10 days provides guidance that has becone
indispensable to the operational forecaster. These numerical
solutions require significant computer resources and
operational weather centers have sought cut the most advanced
digital computers available. The most advanced systems.-
however, are often saturated shortly after installation as
the N¥VP models increase in resolution and sophistication. The
nature of the problem is such that a doubling of the spacial
resoclution, in 3 dimensions, increases the CPU requirements
by a factor of 16 and the memory requirements by a factor of
8. The demand for increased memory and computational speed
will most likely continue into the foreseeable future as
modelers strive for increased accuracy through better spacial
resolution and greater sophistication in the representation
of physical processes.

The last 20 yvears has seen remarkable growth in the
computational speed of computers and the size of random
access memories. (see Fig. 1). The development of vector

processors capeble of processing many operands in a pipelined |

mammer has been a major development. The CRAY-1 and CDC CYBER
205 are the most popular examples of this architecture. As
pipelines machines approach a ceiling in performance do to a
limit on thé speed of signal propagation in semiconductor

A3

chips. the emphasis of the supercomputer industry bas shifted
towards the development of parallel architectures. Hany

computationally intensive tasks are inherently parallel and
arcnltectures WNicn can expiglt Tnat paralieilsm Can DE usedq

to solve problems once thought to be intractable.

Parallel processors have developed along at least three
paths. The first involves the interconnection of a few very
fast processors to a shared memory. Examples of this approach
include the current architectures of Cray Research and
ETA/CDC. The second path is represented by the so-called
Dataflow machines. In this architecture a detailed analysis
of the program is perforaed. Instructions are generated to
perform operations as operands bhecome available thus avoiding
the von Neumann bottlenmeck. The Yery Long Imstruction ¥ord (
YLI¥) architecturs of Hultiflow Computer is an example. The
third path involves the interconnection of thousands of
relatively slow processors. The Conrection Machine { CiI) of
Thinking Machines Corporation is an example of this type of -
architecture.

"I‘his paper will be concermed with discussing the NYP problen
on the C. Section 2 will present the formulation of an NWP
model including the finite difference operators and the
orgsnization of calculations. In section 3 the CH will be
introduced and the hardware characteristics discussed.
Section 4 will describe how the N¥P model was implemented on
the CM. Section 5 will present performance figures for the
model on the CM and several other architectures. Section 6
will ‘be the summary and conclusions.

PER SECONMD

HIMW VISWL

g0

COMPUTER SPEED CRAY *-MP o'

Jo

O

e,
(2]
=
»
<

L]

PARALLEL
CRAY X-MP/2 CRAY X-MP/M

W

13M 30|0~490
CYBER 208 ¢ 18M-3080-200

s

"‘.'35& CAAY 1 @

0

Asaased g

R

@

SEMIAL

1‘0‘

DEUCE VALVE 400

1
sasnd 2 2 2aaad g

10

A biasat 1.2

P o e Bad add 4

| pam § Y -—r—n—'l—"“‘l-'-P'F‘#
1880 1885 1090 2000

¥ T L4 T ™ Ll T

10

=1

950 1856 1960 1086 1970 "1976

Fig. 1 History of peak superconputer performance in

Hegaflopsa.

e

2. HODEL FORMULATION

" In this section a grid-point, primitive equation model will

be presented.

2.1

Primitive equations on a nolar sterecgrephic proiection

The primitive egquations on a polar stereographic projection
in the sigma coordinate (Phillips. 1957 } are presented

» 66=-m2{i(11:)+1(&)‘,-®-

(

3
dp. 2 a fup. a {vD.
=-) —] + —
dat mfax(m) ay(m)d"(s)
s D

7)

» below.
£=-muﬂ-m7-€5—t;iﬂ-mc 8£-m§-+fv+w
dt ox av dac PUYgx U 6x 2&2
av—-muﬁ-mvav-t;gi-mc 8 -a—p—-mié-;-fu-u
ot T dx 3y 6o 2 gy a2
8 _ 3 _ 38 t;rae%(aa) +(_ae
T T %36 T AT furbaience - A3
R RN, P I £) % 4
T I 0 5 T rbatence T\ fprecipitation ©

. du
J% ftarbulence
av
+|—1 -
(at)mbuhm

) e (i
precipitation —a_t- radiation

(L)

l
!

|

(2):

33

’

=

i
1

‘. where

n=-— —-—mm————
1 +sin¢

2acospcos A
X=

{+sinéd
_2acos¢sin?\
1+siné
f=2Qsmd

and the other symbols have the usual neteorological meaning.

These equations describe the time rate of charge of four

quentities., u, v, 8, q, which very in 3-dimensions and one
quantity, p¥*, which varies 1in 2-dimensions. In teras of Fig.

‘2. u, v. 8, q. are defined over NX. NY. and NZ while p* is |
defined over NX and NY.

2.2 Horizontal and Yertical Grid Structure

The horizontal grid is the "B" grid described by Arakawa (
1972) and illustrated in Fig. 3. This grid bas very good

- geostrophic adjustment properties and the placement of the

variables facilitates the programming effort. The vertical
structure is presented in Fig.4 la.r:.d represents a standard
configuration found in many models. |

NZ

Y - z

'H‘Fig. 2 Geometric definition of NX, NY and NZ.

+ o+ o+

O Q

+ 4+ o+
O @)

+ o+ +

p*,0, q

Fig. 3 The Arskewa "B" grid. The circle points represent the
location of the u and v wind components and the plus points
represent the location of p*. theta and specific humidity.

N

.Fig.4 .Yertical sigma structure of the model. The solid lines |

6
6
2 ammeeeee- u,v,8,q,®--------- |
;
[uv,8,4,P -

represent the interfaces between sigma layers and the dashed
lines represent the mid-points of the sigma layers.

2.3 Space differencing and averaging operators

ThEe X and ¥ nOorizontal aerivactlive are approximatea py tne
following formulas:

iy 0.5
% s)xy = ((diet,i~ i + O ()i,iﬂ).f (ﬁ)
5 . 0.5
3_(5’2- = Oy = (0457 O+ Oserm Oserjer)* (W) |

where the i and j indices refer to either the pius points for
a derivative at thé circle points or the circle points for a
derivative at the plus points. Please note that i increases
in the eastward direction and j increases in the southward
direétion_ | ' - |

i%

" The vertical advection terms are approximated by the

following fqmula :

fﬂ.xi; 1(()“1 ()kl+-k-1 |{()|¢ ()k-l I*OS
o ' "T\'Slm Ok } 2—‘\6k Gk-u)}

where the k + 172 and k - 1/2 indices refer to the sigma
layer interfaces and the k + 1 and k - 1 indices refer to the
sigma layers.

The horizontal averaging operator is as follows:

= {04+ Qs Osgu® Osegges) *025
where the i and j irdices refer to plus points for an average
at the circle points and the circle points for an average at

the plus points.

The formulation for the vertical integration of the vertical

‘welocity and géopotential are standard and not presented here. ".

2.4 Time differencing

The time differencing scheme is the split-explicit method
described by Gadd (1978). In this scheme the terms
responsible for gravity-inertia oscillations are time
integrated seperately from the terms associated with
advgction and physical processes. The advantage of this

‘ ﬁpprdéch is one of economy since the terms associated with
: f_é.st moving and meteorclogically unimportant waves can be

solved with a small timestep for computational stability
while the remining terms are solved less frequently with a
longer time step. The net result is a considerable savings in
computer time over a scheme which solves all terms with a
timestep needed for stability of the gravity-inertis waves.
Details of the method and a stability analysis can be found
in Gedd's paper and the references within.

'2.4.1 Gravity-Inertia terms

The gravity-inertia terms are integrated with the forward-
backward scheme as described by Gedd. The first step is a
forwvard time difference of the surface pressure tendency
equation.

=+l

n b3
Pe = Pe +F *Ats‘,
where F represents the RHS of {(B).

Next the thermodynamic equation and moisture conservation
equations are forward time differenced with only the vertical
advection terms after the vertical velocity is conputed with
(7). -

8 =8 +YA *At,,

el E -
g~ =g + YA *é:.tsw {
where Ya renresents the vertical advection terms of {(3) and

(4.

¥ith the updated. surface pressure, theta, and specific
humidity. the geopotential is vertically integrated using
(6). The equations of motion. (1) and (2). are then updated.

r ~

n i+l)
EH = we] FAT + PGFT A MCT + 1 Fr¥ o+ at
! C =

-

C al n n =+l K un+1__1”1
™= ¢*e] ¥AY + PO 4 MCT - | —5—]| * At

[_ 2

where VA represents the vertical advection, PGF represents
both pressure gradient terms, NICT represents the terms with

gw

. map coordinates and f is the coriolis parameter.

After two consecutive timesteps, the advective terms of (1>. -
(2). (3), and (4) are evaluated. This procedure is described -
in section 2.4.2. ol :

2.4.2 Horizontal advection terms

The horizontal advection terms are solved with the Lax-
‘Wendroff scheme (Lax and Wendroff. 1960). In this scheme.
provisional values of the prognostic variables are computed
at time level n + 1/2. Using these provisional values, the
forcing is recomputed and the updated values of the
prognostic variables are obtained at time level n + 1. This
procedure is represented below.

1
nﬁ;= o) +HAM* b
2
1 At
?‘*2_=iv‘§ +HAR ¥
2
n-!-!'- = a ét.‘*
8 2=\8/ +HA™*
2 -
1 At
q‘*?:iq‘j + HAT* — 2%
2
1 a n-l-."_
T =u+HA 2 * At
il b Y n-d-.’l. -
v =v + HA 2 * At
=+l x “1._
B = e + HA 2 * At“‘,
x+1 n n,-hl_
qg =q +HA 2 *At,,

- where HA represents the horizontal advection terms of (1}.
(2). (3). and (4). The n + 1/2 provisional values are
conputed at the circle points for those prognostic variables
defined at the plus points. Similarly, the n + 1/2
provisional values are computed at the plus poirits for those
pPrognostic variables defined at the circle points.

%

2.5 Horizontal Boundary Conditions

For thnls study the model was conrigured witn Cycllc Doundary
conditions in the x-direction and fixed boundary conditions
in the y-direction for all prognostic variables. In real data
applications tendencies from a large'r scale model can be
applied to the boundaries in a manner similar to many
operational limited-area models.

2.6 Sequence of calculations

For each full timestep there are two gravity-inertia wave
timesteps and one advective timestep. The sequence of steps
to solve the equations for each full timestep are presented
in Fig. 5. For each step in the sequence the calculations
take place at all NX x NY horizontal grid points in parallel.

The calculation of the vertical velocity and the geopotential
couple each vertical layer to the one below it for the
‘solution of the inertia-gravity wave terms. The horizontal
advective terms computed in the second ‘k' loop are not

vertically coupled. The vertical coupling of the layers is of_

no consegquence for the CH as the parallelism is across the
horizontal domain. As we will see later, parallel processing
of such & fine-grained algorithm is a problem on the CRAY Y-
MP. The CRAY will function best if the code is setup so that
multitasking is by vertical layer. The recursive propery of
the vertical velocity and geopotential make a restructuring
of the code necessary for optimum execution on the CRAY.

o

‘ GRAVITY-INERTIA WAYE TERMS
FORGW =1T02D0

px (1) = px(m) +
FORK =1TONZDO

6(K)=06(K-1) + ...

6 ()t} = g (xH)(n} +
d(K)(n+1)=q(K)(n) +
D (K)=D(K-1) +
uk)n+) =y xHrnd +

v(k)) =y (k) +

END FOR

END FOR
' ADYECTIVE TERMS
FORK =1TONZ

u(K)(n+1) =y (x)n +

vikynt) =y ()l +
g(k)t) = g (x)y(n) + |

gy H) = g k) +

END FOR

Fig. 6 Sequence of calculations to advance the solution by
on full timestep. ‘K' refers to the vertical layer and 'n'

- 1ndlcstes the tlhe level.

#®

‘mechanisms for communication. The router is the more general

"3 THE CONNECTION MACHINE

The Connection Machine (Hillis. 1986) is a single
jnstruction/multiple data (SIMD) parallel computer with up to :
65536 processors controlled by a conventional front-end :
computer (see Fig. 6). Each processor has 8K bytes of memory
yielding a total memory capacily of 512 llegabytes or 128
million 32-bit floating point numbers. Problems requiring

nore physical processors than are available are supported
through a virtual processor mechanism which is invisible to
the user. Each physical processor can simulate several

virtual processors with an associated decrease in memory and
increase in execution time. For example, if each physical
processor simulates two virtual processors then the execution
time will double and the memory available for each virtual
processor will be 4K bytes. Fig. 7 presents various virtual
processor configurations and the associated memory.

Interprocessor communication is handled by a network built on
a 12-dimensional hypercube. This hardware supports two

mechanism arnd allows for data to be sent from any processor
directly to any other processor. The less general method is

refered to as NEWS communication after the four directions on-
a two-dimensional grid: North, East, ¥West and South. The NE¥S
mechanism allows for the efficient exchange of information
between adjacent processors on a grid.

4. IMPLEMENTATION ON THE CONNECTION MACHINE

4.1 Data structure

The most straight forward implementation of the model on the
Connection Machine consist of assigning e virtual processor
to each column. The following C* code will define a data
structure called "state" which specifies the memory layout
within each processor and then creates a variable called

“points” which consists of WX by NY instances of the
structure. Sl

%

]

Front End Memory

, Front End
User terminal® Computer code]
Memory bus t
Instruction bus
Data processors P H P P PN P
| a T o e
Lor_‘:lme:r.o;im--M N M — M = M M
' 0 1 2 3 65335
High-speed Communications Router
Disk Disk Disk Display

Fig. 6 Architecture of the Connection Machine. (from
i‘l‘hinkjng Machines Corporation Documentation of the Connection

!

1

 Hachine)
Ratio Virtual Memory each
n processors . —— - (CM-2)

1 64K 8K bytes

2 128K 4K bytes

4 253X N 2K bytes

8 B12X 1X bytes

16 1M 512 bytes

32 2% 258 bytes

€4 4X 128 bytes

128) "64 bytes

258 16M 32 bytes

512 324 16 bytes

1X 644 8 bytes

2X 128M 4 bytes’
ax 2584 2 bytes -

Fig. 7 Various configurations of virtual processors and
nmemory on the Connection Machine. (from Thinking Machines
Corporation Documentation of the Connection Machine)

34

#define NRNX 256 /* number of grid points in x-dir */

#define NY 256 /* mumber of grid points in y-dir */ :
¥gerine N Iz /* numper oI layers +/ i

domain state {
float u { X2 }: f* u wind */ i
float v [N2]: /* v wind L 74
float t [NZ . /* potential temperature */
float q [N2 | /* gpecific bumidity */
float pstar : /* surfacs pressure x}
float zstar :}. /* terrain height */

domain state points [NX * NY |:

The u and ¥ wind components are staggered one half grid
distance in both the x and y directions from the potential
temperature points on the “B" grid. In terms of the processor i

t
H
|

where they are stored. the wind components are colocated with
the mass point to the "northwest®.

4.2 Finite difference and averaging operators ;
Interprocessor communication is slow compared to the floating i
point performance for data within a processor. IMACROS to :
retrieve data from neighboring processors have been coded in
the Parallel Instruction Set (PARIS) of the Connection
Machine using the NEWS communicetion. These MACROS are called
XP1, X011, YP1. and Y1 for x plus 1, X minus 1. etc. Using
these MACROS, the basic horizontal couplihg operators can be
efficiently computed.

The C* code to compute the x-derivative., y-derivative and
four point average of u wind at the mass points in parallel
for some layer k is presented below.

tempi = TH1 (u[k]):

tenpz = templ + U [XK 1.
temp3 = IM1 (temp2).

/* u bar */

ubar = (temp2 + temp3) * 0.25;

/¥ dx of u *¢
dxu = (teap2 - temp3) * 0.5;

/* dy of u */
temp3 = templ - u [kj:
dyu = (temp3 + X1 (temp3)}) *0.5:

The orientation of the points relative to each other for the '
above code segment is shown in Fig. 8. ‘

i

It can be shown that this code segment minimizes the amount
‘of interprocessor communication. Similar code exists to
compute the other horizontal coupling terms. The update of
the prognostic variables. once all the terms are computed.
will occur in the processor memories at the nominal
performance of the machine.

It is interesting to note that spproximately 40%¥ of the
rumming time of the model is spent doing interprocessor
conmunication. In other words, if data could be accesses from
adjac;ént processors at the same speed a3 data within a
processor the code would run 40X faster.

ot

+ 4+ o+

o o
G-13-0 G,j-1

+

O O
(i-1,j) (i,))

1' ;
Fig. 8 Orientation of points for finite difference and

averaging operators. I i3 the index in the x-direction and J
i= the index in the y-direction.

5. PERFORMANCE FIGURES

Comparing the performance of algorithms on several different
¢omputer systems can be a difficult because the organization !
of the code may favor one system over the other. The
requirement of contiguous long vectors for “good" vector
performance on the CDC CYBER 205 is a well known example of
this problem. For this study, every attempt was made to be
fair to all systehs. In this section. the performance of the

Connection Hachine and several other computer systems will be !
presented.

5.1 Model performance on different architecturesb

An ANSI 77 FORTRAN version of the model was designed which
should execute efficiently on most systems. The code was
organized so that vectorizing compilers for vector ,_
architectures would see a vector length equal to the i
horizontal domain. The loops over the horizontal domain. |
however. contains many instructions so that non-vector
architectures will see enough computational work to allow for
"instruction scheduling*. The CYBER 205 compiler was able to
vectorize every horizontal loop. Chaining or. linked triads
were encouraged throuc{h the 11beral use of. parenthe31°= to

[3

"“help the compilers identify opportunities for these time

saving instructions.

All timings of tne FORTRAN version or tne code were done LOIL
a 50 x 50 horizontal grid with 32 vertical layers. The
ninimum grid distance on the image plane was set at 40 knms
and the appropriate time step for computational stability wes
used. The forecast length was set for 24 hours or one
forecast day. This configuration represents a limited area
domain of about 2000 kns on a side. This dopain size is
unrealistically small and was chosen to so that CPU timings
from a variety of systems with much different performance
characteristics could be obtained. A realistic configuration
would be a 256 x 256 horizontal grid corresponding to &
domain of approximately 10000 kn on a side. Since the amount
of computational work is linear with the number of grid
points. the timings obtained with the 50 x 50 grid can be
acaled to arrive at timings for a 256 X 256 grid. For the
most restrictive architecture. the CYBER 2065, this is valid
because a vector length of 2500 (50 X 50) is long enough

for vector efficiency of over 90%. I am assuming that

sufficient memory is available to hold the larger domain and
that memory conflicts are not significantly changed. Assuming
64~-bit floating point precision. this problem will need about
80 Megabytes of memory for a 256 x 256 grid with 32 layers.
The introduction of physical parameterization for turbulence,
radiation. and precipitation will increase the memory
réquirements

Table 1 shows the CPU tlmlngs for various systems. The NAS
9050 is an IBM 370 plug compatible system featuring scalar
processing with a 38ns clock. It performance is conparable to
the CDC 205 using the scalar processor only. The Yery Long
Instruction Word lMultiflow system does very well compared to
the NAS and 205 when you consider that its price tag in about
$500K. The 205. using 1t3 vector processor, achieves a
speedup of about 10 to 1 for 64 bit and 20 to 1 for 32 bit
over the scalar processor. These are typical values for yery
well vectorized code. The speed difference between the CRAY X—
315 and Y-IIP reflect.,, almost exactly, the dlfference in the

1
1
)
|

&

CRAY Y-MP{1 proc) 64 bit CET?? 1730 s

"cycle time (8.5ns for the X-MP vs.6.2ns for an early YIIP).

SYSTEMN PRECISION COMPILER CPUTIME
NAS 9050 32 bit IBH ¥S-FORTRAN 55417 s
CDC 205(scalar) 32 bit CDC FTN200 46784 s
CDC 205(scalar} 64 Dbit CDC FTN200 40186 s
Multiflow 147200 32 bit TRACE FORTRAN 34524 s
CDC 205(vector) 64 Dbit CDC.F'I‘HZOU 3382 s
CRAY X-MP(1 proc) 64 bit CFTI?T 2439 s
CDC 205(vector) 32 bit CDC FTN200 ig61 s

TABLE 1. CPU times for the FORTRAN version of the model. All
times were computed for a 50 x 50 horizontal grid and scaled
to a 256 x 256 grid. The forecast length is 24 hours, there
are 32 vertical layers and the grid distance is 40 kms.

5.2 ‘ Model performance on the Connection Machine

CPU timings for the C* version of the model on the Connection
pacnine are presented 1n taple Z. Tne aomaln S1ze consiaerea

is again 256 x 256 with 32 layers. The numbers presented are
a combination of measured and computed results using the 16K
Connection Machine at NRL. Since this problen is conpletely
parallel and the Connection Machine scales linearly. the
computed results are accurate. '

—

3

The best wall time performance is achieved when oneé processor

is assigned to each vertical column: a ¥P ratio of 1. A 64K
processor machine is required and it will solve the problem
in a little less than half of the time required by the CRAY
Y-MP using one processor. The best use of the processors in
terms of speed per physical processor is obtained when
several virtual processors are assigned to each physical
processor. Pipelining of instructions across several virtual
processors within a physical processor results in a better

utilization of the hardware as shown by the CPU/YF ratios in

table 2. A YP ratio of 4 is probably best because anything

_higher results in too little memory per processor to solve

the problem once physical parameterizations are added. For a

64X machine, a 512 X 512 grid would yield a VP ratio of ¢ and

would take-2438 secs to solve.

PHYSICAL PRCCIZSEORS Y2 _RATIO CPUTIME CPU/¥P RATTIO
64X ‘ 1 768 s 768 s
| 16K 4 2438 s 610 s

8K 8 4656 s 582 s

TABLE 2. CPU times for the C*¥ version of the model with e
256 x 256 grid. 40km grid spacing, 32 layers and a forecast
length of 24 hours for different numbers of virtual
processors per physical processors. The CPU time normalized
by the VP ratio is also presented.

5.3 HNultitasking on the CRAY Y-MP

The FORTRAN version of the model was also run on the CRAY

Y-MP using multiple processors. The code was muititasked
using the recently available autotasking software. This
software features a preprocessing step which analyzes the
data dependencies within the code and inserts nicrotasking
compiler directives into the source prior to the actual

- compilation process. The processed source 13 available for

inspection and may be further modified prior to compilation.
This preprocessing step automates what was previously a
manual task. As with all source preprocessors., one should
expect to go through several iterations before obtaining an
optimized version of the code.

The source output from the autotasking software was modified
by including additional compiler directives. The FORTRAN .
statements remained uncharged. The timing results on the CRAY -
Y-MP using 4 and 8 processors is shown in Table 3. The ‘
results. indicated in terms of speedup over a uniprocessed
run, indicate a point of diminishing returns with 4
processors.

" NUMBER_OF PRCCESSORS SPEEDUP OVER 1 PROCESSOR

8 2.8

TABLE 3. Speedup over 1 processor for multitasked versions
of the code on the CRAY Y-1IP.

The explanation of why an additional foui pfocessor’s failed
to speedup the .code significantly is as follows. Refering
back to Fig. 5. the first ‘k' loop contains a recursive

~computation for the vertical velocity end geopotential. This

dependency prevents the k' loop from being microtasked. The
microtasking is then applied to the NX x NY dimension. For
the NX = NY = 50 grid dimension used in the rum. the
synchonization of processors at the end of each horizontal
loop becomes a bottleneck. In other words, the qalculations
are too fine grained. The second ‘k' loop contains no
vertical dependencies and was microtasked. Since a majority
of the work is contained in the first ‘k' loop., a point was
reached where additional processors could not be effectively
used.

The solution, fortumately, is straight forward. An increase
in the horizontal domain to the desired size of 256 x 256
should result in significantly less synchonization overhead

at the end of each horizontal loop. Alternatively. a seperate

%k' loop could be constructed to compute the vertically
coupled portions of the inertia-gravity wave calculations.
The first ‘k' loop would not contain any vertical
dependencies and could then be microtasked. This additional
'k' loop would obviously microtask over the horizontal loop
but would result in less code being subjected to a fine-
grained bottleneck. A significant increase in temporary
storage, however, would be required. Unfortunately, as of
this time neither of these opportum.tles has been pursued.

6. SUMMARY AND CONCLUSION

Solution of the primitive equations on the CH has been found
to be straight forward and very efficient. The execution tme
for the dynamics is comparable to wvector supercomputers. This
‘paper did not consider physical parameterizations, however.
some general conclusions can be reached. Since a8 processor
was assigned to each column and physical parameterizations
generally do not involve horizontal information exchange, it
can be anticipated that physics can be computed very quickly
on the CH. The nominal floating point performance of the
machine. 1 Gigaflop, should be achievable as all calculations
will involve data already in the processor rmemories. Perhaps
nore importently. physical parametgrization routines can be
coded as serial code with looping over ‘k'. & very natural

way of thinking. The projection of. the code so as to execute
on all processors simultaneously is stralghforward

7. ACKNOWLEDGENMENTS

I would like to thank John Church of NRL for helping me get
started on the Connection lachine and for being available to
answer many questions. Robert ¥haley of Thinking Hachines

|

" Corporation wrote the MACROS used for interprocessor
communications and offered many useful suggestions. Jim
Abeles, Hic Talisn and Steve Perry of Cray Research
generously volunteered to run the model on the Cray systems
and discuss the results with me. Chuck Aston and Louis e
Backerman of Multiflow Computer also volunteered to run the
model on their system and supply me with the results. I would
like to especially thank Fran Balint for giving me the time
necessary to investigate the Connection Machine.

8. REFERENCES

Arakawa, A., 1972: Design or tne UCLA general circulation
model Htmerlcal simulation of Weather and Climate. Dept. of
]:!eteorolog‘y, Univ. of California. Los Angeles, Tech. Rept.
No. 7.

Gadd. A.J.. 1974: An economical explicit integration scheme.
Meteor. Office Tech. Note 44. 7 pp.

Hillis. D.¥.. 1986: The Connection Machine. MIT Press.
Cambridge, 1986.

Lax, P.., and B. Vendroff, 1960: Systems of conservation laws.
Conm. Pure.and Appl. Math., 13, 217-237.

Phillips, N.A.. 1957: A coordinate system having some special
advantages for numerical forecasting. J. Meteor.. 14. 184-
185, |

